
Package: qlcData (via r-universe)
October 9, 2024

Type Package

Title Processing Data for Quantitative Language Comparison

Description Functionality to read, recode, and transcode data as used
in quantitative language comparison, specifically to deal with
multilingual orthographic variation (Moran & Cysouw (2018)
<doi:10.5281/zenodo.1296780>) and with the recoding of nominal
data.

Version 0.3

Date 2024-06-07

URL https://github.com/cysouw/qlcData

BugReports https://github.com/cysouw/qlcData/issues

License GPL-3

Encoding UTF-8

Depends R (>= 3.5.0)

Imports stringi (>= 0.2-5), yaml (>= 2.1.11), shiny, docopt,
data.tree, phytools, ape

Suggests knitr, rmarkdown, DiagrammeR

VignetteBuilder knitr

LazyData true

Repository https://cysouw.r-universe.dev

RemoteUrl https://github.com/cysouw/qlcdata

RemoteRef HEAD

RemoteSha 14704b71f68547e0eee94e5a3ddaae097a2bc990

Contents
qlcData-package . 2
.expandValues . 3
asPhylo . 3

1

https://doi.org/10.5281/zenodo.1296780
https://github.com/cysouw/qlcData
https://github.com/cysouw/qlcData/issues

2 qlcData-package

getTree . 5
glottolog . 7
join_align . 9
pass_align . 10
read_align . 11
recode . 12
tokenize . 14
write.profile . 18
write.recoding . 21

Index 24

qlcData-package Processing data for quantitative language comparison (QLC)

Description

The package offers various functions to read, transcode and process data. There are many different
function to read in data. Also a general framework to recode nominal data is included. Further, there
is a general approach to describe orthographic systems through so-called Orthography Profiles. It
offers functions to write such profiles based on some actual written text, and to test and correct
profiles given concrete data. The main end-use is to produce tokenized texts in so-called tailored
grapheme clusters.

Details

Package: qlcData
Type: Package
Version: 0.3
Date: 2024-06-07
License: GPL-3

Various functions to read specific data formats of QLC are documented in read_align, read.profile,
read.recoding.

The recode function allows for an easy and transparent way to specify a recoding of an existing
nominal dataset. The specification of the recoding-decisions is preferably saved in an easily ac-
cessible YAML-file. There are utility function write.profile for writing and reading such files
included.

For processing of strings using orthography profiles, the central function is tokenize. A basic
sceleton for an orthography profile can be produced with write.profile

Author(s)

Michael Cysouw <cysouw@mac.com>

.expandValues 3

.expandValues Internal helper

Description

produce combinations of nominal variables

Usage

.expandValues(attributes, data, all)

Arguments

attributes a list of attributes to be recoded. Vectors (as elements of the list) are possible to
specify combinations of attributes to be recoded as a single complex attribute.

data a data frame with nominal data, attributes as columns, observations as rows.

all Logical: should all values be produced or only those with existing data?

Details

Just a helper.

Value

expandValues is an internal help function to show the various value-combinations when combining
attributes.

Author(s)

Michael Cysouw

asPhylo Convert Glottolog trees to phylo format

Description

Convenience version of conversion to phylo format of the ape package, used throughout packages
for phylogenetic methods. This conversion offers various options to tweak the branch lenghts of
Glottolog trees (which do not have any inherent branch lengths). Currently very slow for large
trees!

Usage

asPhylo(tree, height = 100, fixed.branches = NULL, long.root = NULL,
multi.allow = FALSE, quick = FALSE)

4 asPhylo

Arguments

tree (selection of) Glottolog data, preferably extracted with getTree. If the selection
is not logically a tree, then it will lead to errors.

height Height of the tree. By default all nodes in the tree will be simply equally spaced
on this height in an ultrametric fashion, i.e. all leaves will be at height zero.

fixed.branches Alternatively to height, specify a fixed length for all branches. Note that this
happens before all singleton nodes will be removed, so branches with singleton
nodes will become as long as the amount of singleton nodes on it.

long.root The Glottolog version included in this packages includes a ’World’ root and six
area nodes below this root. These nodes are not strictly speaking genealogical
nodes, though they are often practical for phylogenitic inference. Specify the
length of these nodes here.

multi.allow Allow multichotomies in tree

quick Conversion when quick approach is used

Details

The phylo format is a widely used format for phylogenetic inference. However, many methods
depend crucially on branch lengths. As linguistic trees mostly do not have branch lenghts, this
conversion offers a few options to tweak branch lengths.

Note that phylo trees do not allow singleton nodes, so they are removed internally (by collapse.singles).
The tree is also forced to be binary (by multi2di), which is also expected in many phylogenetic
analysis.

The order of length assignment is: reduce (in getTree) » height » fixed length » long root » collapse
singles, which can be used to lead to different results. Also the option reduce in getTree can be
used to influence the branch lenghts (see Examples below).

The collapsing of singleton internal nodes after branch length leads to an interesting effect that
branch lengths are somehow proportional to the number of internal diversity of the tree, which
might make sense as a proxy to branch lengths. Something like reduce = F, fixed.branches = 1,
long.root = 10 seem promising.

Value

An object of class phylo.

Note

Depends internally on ToNewick which is currently very slow for large trees.

Author(s)

Michael Cysouw <cysouw@mac.com

getTree 5

Examples

many different effects can be achieved by combining options

isoCodes <- c("deu", "eng", "swe", "swh", "xho", "fin")
treeWithInternal <- getTree(isoCodes, reduce = FALSE)
treeNoInternal <- getTree(isoCodes, reduce = TRUE)

to understand the influence of the option 'reduce' also check
library(data.tree)
plot(FromDataFrameNetwork(treeWithInternal))
plot(FromDataFrameNetwork(treeNoInternal))

library(ape)
oldpar <- par("mfcol")
par(mfcol = c(2,3))

phylo <- asPhylo(treeWithInternal, height = 20)
plot(phylo, main = "reduce = FALSE\nheight = 20", cex = 1)
edgelabels(round(phylo$edge.length), cex = 1.5)

phylo <- asPhylo(treeNoInternal, height = 20)
plot(phylo, main = "reduce = TRUE\nheight = 20", cex = 1)
edgelabels(round(phylo$edge.length), cex = 1.5)

phylo <- asPhylo(treeWithInternal, fixed.branches = 1)
plot(phylo, main = "reduce = FALSE\nfixed.branches = 1", cex = 1)
edgelabels(round(phylo$edge.length), cex = 1.5)

phylo <- asPhylo(treeNoInternal, fixed.branches = 1)
plot(phylo, main = "reduce = TRUE\nfixed.branches = 1", cex = 1)
edgelabels(round(phylo$edge.length), cex = 1.5)

phylo <- asPhylo(treeWithInternal, fixed.branches = 1, long.root = 10)
plot(phylo, main = "reduce = FALSE\nfixed.branches = 1, long.root = 10", cex = 1)
edgelabels(round(phylo$edge.length), cex = 1.5)

phylo <- asPhylo(treeNoInternal, fixed.branches = 1, long.root = 10)
plot(phylo, main = "reduce = TRUE\nfixed.branches = 1, long.root = 10", cex = 1)
edgelabels(round(phylo$edge.length), cex = 1.5)

par(mfcol = oldpar)

getTree Extract parts out of the full Glottolog 2016 tree

6 getTree

Description

getTree is a convenience function to extract parts from the Glottolog 2016 data as provided here in
glottolog.

Usage

getTree(up = NULL, kind = "iso", down = NULL, reduce = FALSE)

Arguments

up a vector of names from which to extract the tree upwards. Can be names from
Glottolog, ISO 639-3 codes, WALS codes or glottocodes. Default settings ex-
pect ISO 639-3 codes.

kind what kind of names are specified in up? Choose one of iso, wals, glottocode
or name for full names from Glottolog.

down a vector of family names from Glottolog from which to extract the tree down-
wards. For consistency, a node "World" as added on top, linking separate fam-
ilies. Specifying families that are part of other families in down will lead to a
warning, but any overlap will be gracefully removed.

reduce remove all nodes in the tree that do not branch.

Details

Specifying both up and down will extract only the intersection of the two. So any name in up that
lies outside any family in down will be discarded.

Value

Returns a data.frame with the relevant lines from the full glottolog data.

Note

This function is hard-coded to only use the data as available in glottolog.

Author(s)

Michael Cysouw <cysouw@mac.com

See Also

asPhylo for tweaking branch lengths in phylo conversion.

Examples

use getTree() to select genealogical parts of the data
data(glottolog)

(aalawa <- getTree(up = "aala1237", kind = "glottocode"))
(kandas <- getTree(down = "Kandas-Duke of York"))

glottolog 7

(treeFull <- getTree(up = c("deu", "eng", "ind", "cha"), kind = "iso"))
(treeReduced <- getTree(up = c("deu", "eng", "ind", "cha"), kind = "iso", reduce = TRUE))

use FromDataFrameNetwork() to visualize the tree
and export it into various other tree formats in R

library(data.tree)
treeF <- FromDataFrameNetwork(treeFull)
treeR <- FromDataFrameNetwork(treeReduced)

plot(treeF)
plot(treeR)

turn into phylo format from library 'ape'
t <- as.phylo.Node(treeR)
plot(t)

turn into dendrogram
t <- as.dendrogram(treeF)
plot(t, center = TRUE)

glottolog Glottolog data from https://glottolog.org

Description

Data from Glottolog 2016 with added WALS codes and speaker-community size. Various minor
corrections and additions were performed in the preparation of the data (see Details). All stocks
(i.e. largest reconstructable units) are linked to macroareas, and they are linked to a single root node
calles ’World’.

Usage

data("glottolog")

Format

A data frame with 22007 observations on the following 10 variables.

name a character vector with the name of the entity.

father a character vector with the name of the direct parent entity.

stock a factor with the highest reconstructable unit. This column is added just for convenience, it
does not add any new information.

glottocode a character vector with the glottocode. The same identifier is added as rownames of
the data.

iso a character vector with ISO 639-3 language codes

https://glottolog.org

8 glottolog

wals a character vector with WALS language codes

type a factor with levels dialect, family and language

longitude a numeric vector with geographic coordinates as available in the Glottolog

latitude a numeric vector with geographic coordinates as available in the Glottolog

population a numeric vector with speaker community size from an old Ethnologue version (13th
Edition), licensed to the MPI-EVA in Leipzig.

Details

For Glottolog data: the names were uniquified by adding a glottocode when a name occurs more
than once (typically in some cases of a language and a family having the same name). Entries
classified as ’bookkeeping’, ’unattested’ ’artificial language’, ’sign language’, ’speech register’ and
’unclassifiable’ were removed. Links to WALS codes were added: note that about 20 links are
missing, and for the non-unique links one link was chosen by data availability. Some macro codes
from ISO 639-3 were added.

A level ’area’ was added to the tree, separating all languages in six areas: Eurasia, Africa, Southeast
Asia, Sahul, North America and South America. This is reminiscent of the proposal from Dryer
(1992), though Austronesian is grouped with Southeast Asia here, because that makes more sense
genealogically. Still, these nodes are surely not monophyletic! Mixed languages are not assigned
to an area.

Please note that the data provided here is not identical to the online version of Glottolog, as the on-
line version is constantly being updated! This is Glottolog 2016. Updates might be made available
when they are provided for download from the website.

The format of the glottolog data might seem a bit convoluted, but by using getTree it is actually
really easy to extract genealogical parts of the glottolog data and by using FromDataFrameNetwork
this can be nicely plotted and turned into various tree format as used in R.

Source

Glottolog 2016 data from https://glottolog.org. WALS 2013 data from https://glottolog.
org. Information on macrolanguages from https://iso639-3.sil.org/code_tables/macrolanguage_
mappings/data. All data downloaded in March 2017. Population numbers are from the 13th edi-
tion of the Ethnologue, licenced to the MPI-EVA in Leipzig.

Examples

use getTree() to select genealogical parts of the data
data(glottolog)

(aalawa <- getTree(up = "aala1237", kind = "glottocode"))
(kandas <- getTree(down = "Kandas-Duke of York"))
(treeFull <- getTree(up = c("deu", "eng", "ind", "cha"), kind = "iso"))
(treeReduced <- getTree(up = c("deu", "eng", "ind", "cha"), kind = "iso", reduce = TRUE))

check out areas
(areas <- glottolog[glottolog$type == "area", "name"])
stocks in Southeast Asia
glottolog[glottolog$father == areas[1], "name"]

https://glottolog.org
https://glottolog.org
https://glottolog.org
https://iso639-3.sil.org/code_tables/macrolanguage_mappings/data
https://iso639-3.sil.org/code_tables/macrolanguage_mappings/data

join_align 9

use FromDataFrameNetwork() to visualize the tree
and export it into various other tree formats in R

library(data.tree)
treeF <- FromDataFrameNetwork(treeFull)
treeR <- FromDataFrameNetwork(treeReduced)

plot(treeF)
plot(treeR)

turn into phylo format from library 'ape'
t <- as.phylo.Node(treeR)
plot(t)

turn into dendrogram
t <- as.dendrogram(treeF)
plot(t, center = TRUE)

join_align Join various multialignments into one combined dataframe

Description

Multialignments are mostly stored in separate files per cognateset. This function can be used to
bind together a list of multialignments read by read_align.

Usage

join_align(alignments)

Arguments

alignments A list of objects as returned from read_align.

Details

The alignments have to be reordered for this to work properly. Also, duplicate data (i.e. multiple
words from the same language) will be removed. Simply the first occurrence is retained. This is not
ideal, but it is currently the best and easiest solution.

Value

The result will be a dataframe with doculects as rows and alignments as columns.

Author(s)

Michael Cysouw <cysouw@mac.com>

10 pass_align

pass_align Transfer alignment from one string to another

Description

In the alignment of linguistic strings, it is often better to perform the alignment on a simplified
string. This function allows to pass back the alignment from the simplified string to the original

Usage

pass_align(originals, alignment, sep = " ", in.gap = "-", out.gap = "-")

Arguments

originals Vector of strings in the original form, with separators

alignment Vector of simplified strings after alignment, with separators and gaps. The num-
ber of non-gap parts should match the number of parts of the originals

sep Symbol used as separator between parts of the strings

in.gap Symbol used as gap indicator in the alignments

out.gap Symbol used as gap indicator in the output. This is useful when the gap symbol
from the alignments occurs as character in the originals .

Details

Given some strings, a sound (or graphemic) alignment inserts gaps into the strings in such a way
as to align the columns between different strings. We assume here an original string that is sep-
arated by sep into parts (segments, sounds, tailored grapheme clusters). After simplification (e.g.
through tokenize) and alignment (currently using non-R software) a string is retuned with extra
gaps inserted. The number of non-gap parts should match the original string.

Value

Vector of original strings with the gaps inserted from the aligned strings.

Note

There is a bash-executable distributed with this package (based on the docopt package) that let you
use this function directly in a bash-terminal. The easiest way to use this executable is to softlink the
executable to some directory in your bash PATH, for example /usr/local/bin or simply ~/bin.
To softlink the function tokenize to this directory, use something like the following in your bash
terminal:

ln -is `Rscript -e 'cat(system.file("exec/pass_align", package="qlcData"))'` ~/bin

From within R your can also use the following (again, optionally changing the linked-to directory
from ~/bin to anything more suitable on your system):

file.symlink(system.file("exec/pass_align", package="qlcData"), "~/bin")

read_align 11

Author(s)

Michael Cysouw <cysouw@mac.com>

Examples

make some strings with separators
l <- list(letters[1:3], letters[4:7], letters[10:15])
originals <- sapply(l, paste, collapse = " ")
cbind(originals)

make some alignment
note that this alignment is non-sensical!
alignment <- c("X - - - X - X", "X X - - - X X", "X X X - X X X")
cbind(alignment)

match originals to the alignment
transferred <- pass_align(originals, alignment)
cbind(transferred)

========

a slighly more interesting example
using the bare-bones pairwise alignment from adist()
originals <- c("cute kitten class","utter tentacles")
cbind(originals)

adist returns strings of pairwise Levenshtein operations
"I" signals insertion
(levenshtein <- attr(adist(originals, counts = TRUE), "trafos"))

pass alignments to original strings, show the insertions as "-" gaps
alignment <- c(levenshtein[1,2], levenshtein[2,1])
transferred <- pass_align(originals, alignment,

sep = "", in.gap = "I", out.gap = "-")
cbind(transferred)

read_align Reading different versions of linguistic multialignments.

Description

Multialignments of strings are a central step for historical linguistics (quite similar to multialign-
ments in bioinformatics). There is no consensus (yet) about the file-structure for multialignments
in linguistics. Currently, this functions offers to read various flavours of multialignment, trying to
harmonize the internal R-structure.

Usage

read_align(file, flavor)

12 recode

Arguments

file Multialignment to be read

flavor Currently two flavours are implemented "PAD" and "BDPA"

Details

The flavor "PAD" refers to the Phonetische Atlas Deutschlands, which provides multialignments for
german dialects. The flavor "BDPA" refers to the Benchmark Database for Phonetic Alignments.

Value

Multialignment-files often contain various different kinds of information. An attempt is made to
turn the data into a list with the following elements:

meta : Metadata

align : The actual alignments as a dataframe. When IDs are present in the original
file, they are used as rownames. Some attempt is made to add useful column
names.

doculects : The rows of the alignment normally are some kind of doculects ("languages",
"dialects"). However, because these doculects might occur more than once
(when two different, but cognate words from a languages are included) these
names are not used as rownames of $align, but presented separately here.

annotations : The columns of a multialignment can have annotations, e.g. metathesis or
orthographic standard. These annotations are saved here as a dataframe with the
same number of columns as the $align dataframe. The name of the annotation
is put in the rownames.

Author(s)

Michael Cysouw <cysouw@mac.com>

References

BDPA is available at https://alignments.lingpy.org. PAD is available at https://github.
com/cysouw/PAD/

recode Recoding nominal data

Description

Nominal data (‘categorical data’) are data that consist of attributes, and each attribute consists of
various discrete values (‘types’). The different values that are distinguished in comparative lin-
guistics are mostly open to debate, and different scholars like to make different decisions as to
the definition of values. The recode function allows for an easy and transparent way to specify a
recoding of an existing dataset.

https://alignments.lingpy.org
https://github.com/cysouw/PAD/
https://github.com/cysouw/PAD/

recode 13

Usage

recode(recoding, data = NULL)

Arguments

recoding a recoding data structure, specifying the decisions of the recoding. It can also
be a path to a file containing the specifications in YAML format. See Details.

data a data frame with nominal data, attributes as columns, observations as rows. If
nothing is provided, an attempt is made to read the data with read.csv from the
relative path provided in originalData in the metadata of the recoding.

Details

Recoding nominal data is normally considered too complex to be performed purely within R. It
is possible to do it completely within R, but it is proposed here to use an external YAML docu-
ment to specify the decisions that are taken in the recoding. The typical process of recoding will
be to use write.recoding to prepare a skeleton that allows for quick and easy YAML-specification
of a recoding. Or a YAML-recoding is written manually using various shortcuts (see below), and
read.recoding is used to turn it into a full-fledged recoding that can also be used to document the de-
cisions made. The function recode then combines the original data with the recoding, and produces
a recoded dataframe.

The recoding data structure in the YAML document basically consists of a list of recodings,
each of which describes a new attribute, based on one or more attributes from the original data.
Each new attribute is described by:

• attribute: the new attribute name.

• values: a character vector with the new value names.

• link: a numeric vector with length of the original number of values. Each entry specifies the
number of the new value. Zero can be used for any values that should be ignored in the new
attribute.

• recodingOf : the name(s) of the original attribute that forms the basis of the recoding. If
there are multiple attributes listed, then the new attribute will be a combination of the original
attributes.

• OriginalValues: a character vector with the value names from the original attribute. These are
only added to the template to make it easier to specify the recoding. In the actual recoding the
listing in this file will be ignored. It is important to keep the ordering as specified, otherwise
the linking will be wrong. The ordering of the values follows the result of levels, which is
determined by the current locale.

There is a vignette available with detailed information about the process of recoding, check recoding
nominal data.

Value

recode returns a data frame with the recoded attributes

14 tokenize

Author(s)

Michael Cysouw <cysouw@mac.com>

References

Cysouw, Michael, Jeffrey Craig Good, Mihai Albu and Hans-Jörg Bibiko. 2005. Can GOLD "cope"
with WALS? Retrofitting an ontology onto the World Atlas of Language Structures. Proceedings of
E-MELD Workshop 2005, https://emeld.org/workshop/2005/papers/good-paper.pdf

See Also

The World Atlas of Language Structure (WALS) contains typical data that most people would very
much like to recode before using for further analysis. See Cysouw et al. 2005 for a discussion of
various issues surrounding the WALS data.

tokenize Tokenization and transliteration of character strings based on an or-
thography profile

Description

To process strings it is often very useful to tokenise them into graphemes (i.e. functional units of
the orthography), and possibly replace those graphemes by other symbols to harmonize the ortho-
graphic representation of different orthographic representations (‘transcription/transliteration’). As
a quick and easy way to specify, save, and document the decisions taken for the tokenization, we
propose using an orthography profile.

This function is the main function to produce, test and apply orthography profiles.

Usage

tokenize(strings,
profile = NULL, transliterate = NULL,
method = "global", ordering = c("size", "context", "reverse"),
sep = " ", sep.replace = NULL, missing = "\u2047", normalize = "NFC",
regex = FALSE, silent = FALSE,
file.out = NULL)

Arguments

strings Vector of strings to the tokenized. It is also possibly to pass a filename, which
will then simply be read as scan(strings, sep = "\n", what = "character").

profile Orthography profile specifying the graphemes for the tokenization, and possibly
any replacements of the available graphemes. Can be a reference to a file or an
R object. If NULL then the orthography profile will be created on the fly using
the defaults of write.profile.

https://emeld.org/workshop/2005/papers/good-paper.pdf

tokenize 15

transliterate Default NULL, meaning no transliteration is to be performed. Alternatively, spec-
ify the name of the column in the orthography profile that should be used for
replacement.

method Method to be used for parsing the strings into graphemes. Currently two options
are implemented: global and linear. See Details for further explanation.

ordering Method for ordering. Currently three different methods are implemented, which
can be combined (see Details below): size, context, reverse and frequency.
Use NULL to prevent ordering and use the top to bottom order as specified in the
orthography profile.

sep Separator to be inserted between graphemes. Defaults to space. This function
assumes that the separator specified here does not occur in the data. If it does,
unexpected things might happen. Consider removing the chosen seperator from
your strings first, e.g. by using gsub or use the option sep.replace.

sep.replace Sometimes, the chosen separator (see above) occurs in the strings to be parsed.
This is technically not a problem, but the result might show unexpected se-
quences. When sep.replace is specified, this marking is inserted in the string
at those places where the sep marker occurs. Typical usage in linguistics would
be sep = " ", sep.replace = "#" adding spaces between graphemes and re-
placing spaces in the input string by hashes in the output string.

missing Character to be inserted at transliteration when no transliteration is specified.
Defaults to DOUBLE QUESTION MARK at U+2047. Change this when this
character appears in the input string.

normalize Which normalization to use before tokenization, defaults to "NFC". Other op-
tion is "NFD". Any other input will result in no normalisation being performed.

regex Logical: when regex = FALSE internally the matching of graphemes is done
exact, i.e. without using regular expressions. When regex = TRUE ICU-style
regular expression (see stringi-search-regex) are used for all content in the
profile (including the Grapheme-column!), so any reserved characters have to be
escaped in the orthography profile. Specifically, add a slash "\" before any oc-
currence of the characters [](){}|+*.-!?^$\ in your profile (except of course
when these characters are used in their regular expression meaning).
Note that this parameter also influences whether contexts should be considered
in the tokenization (internally, contextual searching uses regular expressions).
By default, when regex = FALSE, context is ignored. If regex = TRUE then the
function checks whether there are columns called Left (for the left context) and
Right (for the right context), and optionally a column called Class (for the
specification of grapheme-classes) in the orthography profile. These are hard-
coded column-names, so please adapt your orthography profile accordingly. The
columns Left and Right allow for regular expression to specify context.

silent Logical: by default missing characters in the strings are reported with a warning.
use silent = TRUE to supress these warnings.

file.out Filename for results to be written. No suffix should be specified, as various
different files with different suffixes are produced (see Details below). When
file.out is specified, then the data is written to disk AND the R dataframe is
returned invisibly.

16 tokenize

Details

Given a set of graphemes, there are at least two different methods to tokenize strings. The first is
called global here: this approach takes the first grapheme, matches this grapheme globally at all
places in the string, and then turns to the next string. The other approach is called linear here:
this approach walks through the string from left to right. At the first character it looks through all
graphemes whether there is any match, and then walks further to the end of the match and starts
again. In some special cases these two methods can lead to different results (see Examples).

The ordering or the lines in the ortography profile is of crucial importance, and different orderings
will lead to radically different results. To simply use the top to bottom ordering as specified in
the profile, use order = NULL. Currently, there are four different ordering strategies implemented:
size, context, reverse and frequency. By specifying more than one in a vector, these orderings
are used to break ties, e.g. the default specification c("size", "context", "reverse") will first
order by size, and for those with the same size, it will order by whether any context is specifed
(with context coming first). For lines that are still tied (i.e. the have the same size and all either
have or have no context) the order will be reversed in comparison to the order as attested in the
profile. Reversing order can be useful, because hand-written profiles tend to put general rules
before specific rules, which mostly should be applied in reverse order.

• size: order the lines in the profile by the size of the grapheme, largest first. Size is measured
by number of Unicode characters after normalization as specified in the option normalize.
For example, é has a size of 1 with normalize = "NFC", but a size of 2 with normalize =
"NFD".

• context: order the lines by whether they have any context specified, lines with context com-
ing first. Note that this only works when the option regex = TRUE is also chosen.

• reverse: order the lines from bottom to top.

• frequency: order the lines by the frequency with which they match in the specified strings
before tokenization, least frequent coming first. This frequency of course depends crucially on
the available strings, so it will lead to different orderings when applied to different data. Also
note that this frequency is (necessarily) measured before graphemes are identified, so these
ordering frequencies are not the same as the final frequencies shown in the outpur. Frequency
of course also strongly differs on whether context is used for the matching through regex =
TRUE.

Value

Without specificatino of file.out, the function tokenize will return a list of four:

strings a dataframe with the original and the tokenized/transliterated strings

profile a dataframe with the graphemes with added frequencies. The dataframe is or-
dered according to the order that resulted from the specifications in ordering.

errors a dataframe with all original strings that contain unmatched parts.

missing a dataframe with the graphemes that are missing from the original orthography
profilr, as indicated in the errors. Note that the report of missing characters does
currently not lead to correct results for transliterated strings.

When file.out is specified, these four tables will be written to three different tab-separated files
(with header lines): file_strings.tsv for the strings, file_profile.tsv for the orthrography

tokenize 17

profile, file_errors.tsv for the strings that have unidentifyable parts, and file_missing.tsv
for the graphemes that seem to be missing. When there is nothing missing, then no file for the
missing strings is produced.

Note

When regex = TRUE, regular expressions are acceptable in the columns ‘Grapheme‘, ’Left’ and
’Right’. Backreferences in the transliteration column are not possible (yet). When regular ex-
pressions are allowed, all literal uses of special regex-characters have to be escaped! Any literal
occurrence of the following characters has then to be preceded by a backslash \ .

• - (U+002D, HYPHEN-MINUS)
• ! (U+0021, EXCLAMATION MARK)
• ? (U+003F, QUESTION MARK)
• . (U+002E, FULL STOP)
• ((U+0028, LEFT PARENTHESIS)
•) (U+0029, RIGHT PARENTHESIS)
• \[(U+005B, LEFT SQUARE BRACKET)
• \] (U+005D, RIGHT SQUARE BRACKET)
• { (U+007B, LEFT CURLY BRACKET)
• } (U+007D, RIGHT CURLY BRACKET)
• | (007C, VERTICAL LINE)
• * (U+002A, ASTERISK)
• \ (U+005C, REVERSE SOLIDUS)
• ^ (U+005E, CIRCUMFLEX ACCENT)
• + (U+002B, PLUS SIGN)
• $ (U+0024, DOLLAR SIGN)

Note that overlapping matching does not (yet) work with regular expressions. That means that
for example "aa" is only found once in "aaa". In some special cases this might lead to problems
that might have to be explicitly specified in the profile, e.g. a grapheme "aa" with a left context
"a". See examples below. This problem arises because overlap is only available in literal searches
stri_opts_fixed, but the current function uses regex-searching, which does not catch overlap
stri_opts_regex.

Note

There is a bash-executable distributed with this package (based on the docopt package) that let you
use this function directly in a bash-terminal. The easiest way to use this executable is to softlink the
executable to some directory in your bash PATH, for example /usr/local/bin or simply ~/bin.
To softlink the function tokenize to this directory, use something like the following in your bash
terminal:

ln -is `Rscript -e 'cat(system.file("exec/tokenize", package="qlcData"))'` ~/bin

From within R your can also use the following (again, optionally changing the linked-to directory
from ~/bin to anything more suitable on your system):

file.symlink(system.file("exec/tokenize", package="qlcData"), "~/bin")

18 write.profile

Author(s)

Michael Cysouw <cysouw@mac.com>

References

Moran & Cysouw (forthcoming)

See Also

See also write.profile for preparing a skeleton orthography profile.

Examples

simple example with interesting warning and error reporting
the string might look like "AABB" but it isn't...
(string <- "\u0041\u0410\u0042\u0412")
tokenize(string,c("A","B"))

make an ad-hoc orthography profile
profile <- cbind(

Grapheme = c("a","ä","n","ng","ch","sch"),
Trans = c("a","e","n","N","x","sh"))

tokenization
tokenize(c("nana", "änngschä", "ach"), profile)
with replacements and a warning
tokenize(c("Naná", "änngschä", "ach"), profile, transliterate = "Trans")

different results of ordering
tokenize("aaa", c("a","aa"), order = NULL)
tokenize("aaa", c("a","aa"), order = "size")

regexmatching does not catch overlap, which can lead to wrong results
the second example results in a warning instead of just parsing "ab bb"
this should occur only rarely in natural language
tokenize("abbb", profile = c("ab","bb"), order = NULL)
tokenize("abbb", profile = c("ab","bb"), order = NULL, regex = TRUE)

different parsing methods can lead to different results
note that in natural language this is VERY unlikely to happen
tokenize("abc", c("bc","ab","a","c"), order = NULL, method = "global")$strings
tokenize("abc", c("bc","ab","a","c"), order = NULL, method = "linear")$strings

write.profile Writing (and reading) of an orthography profile skeleton

write.profile 19

Description

To process strings, it is often very useful to tokenise them into graphemes (i.e. functional units of
the orthography), and possibly replace those graphemes by other symbols to harmonize the ortho-
graphic representation of different orthographic representations (‘transcription’). As a quick and
easy way to specify, save, and document the decisions taken for the tokenization, we propose using
an orthography profile.

Provided here is a function to prepare a skeleton for an orthography profile. This function takes
some strings and lists detailed information on the Unicode characters in the strings.

Usage

write.profile(strings,
normalize = NULL, info = TRUE, editing = FALSE, sep = NULL,
file.out = NULL, collation.locale = NULL)

read.profile(profile)

Arguments

strings A vector of strings on which to base the orthography profile. It is also possibly to
pass a filename, which will then simply be read as scan(strings, sep = "\n",
what = "character").

normalize Should any unicode normalization be applied before making a profile? By de-
fault, no normalization is applied, giving direct feedback on the actual encoding
as observed in the strings. Other options are NFC and NFD. In combination with
sep these options can lead to different insights into the structure of your strings
(see examples below).

info Add columns with Unicode information on the graphemes: Unicode code points,
Unicode names, and frequency of occurrence in the input strings.

editing Add empty columns for further editing of the orthography profile: left context,
right context, class, and translitation. See tokenize for detailed information on
their usage.

sep separator to separate the strings. When NULL (by default), then unicode charac-
ter definitions are used to split (as provided by UCI, ported to R by stringi::stri_split_boundaries.
When sep is specified, strings are split by this separator. Often useful is sep =
"" to split by unicode codepoints (see examples below).

file.out Filename for writing the profile to disk. When NULL the profile is returned as an
R dataframe consisting of strings. When file.out is specified (as a path to a
file), then the profile is written to disk and the R dataframe is returned invisibly.

collation.locale

Specify to ordering to be used in writing the profile. By default it uses the order-
ing as specified in the current locale (check Sys.getlocale("LC_COLLATE")).

profile An orthography profile to be read. Has to be a tab-delimited file with a header.
There should be at least a column called "Grapheme".

20 write.profile

Details

String are devided into default grapheme clusters as defined by the Unicode specification. Under-
lying code is due to the UCI as ported to R in the stringi package.

Value

A dataframe with strings representing a skeleton of an orthography profile.

Note

There is a bash-executable distributed with this package (based on the docopt package) that let you
use this function directly in a bash-terminal. The easiest way to use this executable is to softlink the
executable to some directory in your bash PATH, for example /usr/local/bin or simply ~/bin.
To softlink the function tokenize to this directory, use something like the following in your bash
terminal:

ln -is `Rscript -e 'cat(system.file("exec/writeprofile", package="qlcData"))'` ~/bin

From within R your can also use the following (again, optionally changing the linked-to directory
from ~/bin to anything more suitable on your system):

file.symlink(system.file("exec/writeprofile", package="qlcData"), "~/bin")

Author(s)

Michael Cysouw <cysouw@mac.com>

References

Moran & Cysouw (2018) "The Unicode cookbook for linguists". Language Science Press. <doi:10.5281/zenodo.1296780>.

See Also

tokenize

Examples

produce statistics, showing two different kinds of "A"s in Unicode.
look at the output of "example" in the console to get the point!
(example <- "\u0041\u0391\u0410")
write.profile(example)

note the differences. Again, look at the example in the console!
(example <- "\u00d9\u00da\u00db\u0055\u0300\u0055\u0301\u0055\u0302")
default settings
write.profile(example)
split according to unicode codepoints
write.profile(example, sep = "")
after NFC normalization unicode codepoints have changed
write.profile(example, normalize = "NFC", sep = "")
NFD normalization gives yet another structure of the codepoints
write.profile(example, normalize = "NFD", sep = "")
note that NFC and NFD normalization are identical under unicode character definitions!

write.recoding 21

write.profile(example, normalize = "NFD")
write.profile(example, normalize = "NFC")

write.recoding Reading and writing of recoding files.

Description

Nominal data (‘categorical data’) are data that consist of attributes, and each attribute consists of
various discrete values (‘types’). The different values that are distinguished in comparative lin-
guistics are mostly open to debate, and different scholars like to make different decisions as to the
definition of values. The recode function allows for an easy and transparent way to specify a recod-
ing of an existing dataset. The current functions help with the preparations and usage of recoding
specifications.

Usage

write.recoding(data, attributes = NULL, all.options = FALSE, file = NULL)
read.recoding(recoding, file = NULL, data = NULL)

Arguments

data a data frame with nominal data, attributes as columns, observations as rows. Op-
tionally a single column can be supplied. In that case the argument attributes
can be left unspecified.

recoding a recoding data structure, specifying the decisions of the recoding. It can also
be a path to a file containing the specifications in YAML format. See Details.

attributes a list of attributes to be recoded. Vectors (as elements of the list) are possible to
specify combinations of attributes to be recoded as a single complex attribute.
When NULL, then all attributes are included individually.

all.options For combinations of attributes: should all theoretical interactions of the at-
tributes be considered (TRUE) or should only the actually existing combinations
in the data be presented (FALSE, by default) in the recoding?

file file in which the recoding should be written. The recoding template is by de-
fault written to a file in YAML format. When file=NULL, the template is not
converted to YAML, but returned inside R as a nested list.

Details

Recoding nominal data is normally considered too complex to be performed purely within R. It is
possible to do it completely within R, but it is proposed here to use an external YAML document
to specify the decisions that are taken in the recoding. The typical process of recoding will be
to use write.recoding.template to prepare a skeleton that allows for quick and easy YAML-
specification of a recoding. Or a YAML-recoding is written manually using various shortcuts (see
below), and read.recoding is used to turn it into a full-fledged recoding that can also be used

22 write.recoding

to document the decisions made. The function recode then combines the original data with the
recoding, and produces a recoded dataframe.

The recoding data structure in the YAML document basically consists of a list of recodings,
each of which describes a new attribute, based on one or more attributes from the original data.
Each new attribute is described by:

• attribute: the new attribute name.

• values: a character vector with the new value names, optionally each value name has a linkage
abbreviation (the name of the name)

• link: a vector with length of the original number of values. Each entry specifies a link to the
new value. Zero can be used for any values that should be ignored in the new attribute. Either
a pure numeric vector, using the numbering of the new values, or a vector of names of the new
value names. It is also possible to use the new values here without specifying the values in the
preceding item.

• recodingOf : the name(s) of the original attribute that forms the basis of the recoding. If
there are multiple attributes listed, then the new attribute will be a combination of the original
attributes.

• OriginalFrequencies: a character vector with the value names from the original attribute and
their frequency of occurrence. These are only added to the template to make it easier to specify
the recoding. In the actual recoding the listing in this file will be ignored. It is important to
keep the ordering as specified, otherwise the linking will be wrong. The ordering of the values
follows the result of levels, which is determined by the current locale.

For writing recodings by hand, there are various shortcuts allowed:

• the names attributes, values, etc. can be abbreviated. The first letter should be sufficient.

• the recodingOf can be the full name of the attribute in the original data, or simply a number
of the column in the data frame.

• the specification of attribute and values can be left out, although the result will be unin-
formative names like ‘Att1’ and ‘Val1’.

• it is also possible to add an item doNotRecode with a vector of original attribute names (or
column numbers). These original attributes will then be included unchanged in the recoded
data table.

A minimal recoding consist thus of a specification of recodingOf and link. Without link nothing
will be recoded. Omitting recodingOf will lead to an error.

There is a vignette available with detailed information about the process of recoding, check recoding
nominal data.

Value

write.recoding.template by default (when yaml=TRUE) writes a YAML structure to the specified
file. When yaml=FALSE the same structure is returned inside R as a nested list.

read.recoding either reads a recoding from file, or a list structure within R, and cleans up all
the shortcuts used. The output is by default a list structure to be used in recode, though it is also
possible to write the result to a YAML-file (when file is specified). When data is specified, the
output will be embelished with all the original names from the original data, which makes for an
even better documentation of the recoding.

write.recoding 23

Author(s)

Michael Cysouw <cysouw@mac.com>

References

Cysouw, Michael, Jeffrey Craig Good, Mihai Albu and Hans-Jörg Bibiko. 2005. Can GOLD "cope"
with WALS? Retrofitting an ontology onto the World Atlas of Language Structures. Proceedings of
E-MELD Workshop 2005, https://web.archive.org/web/20221007002846/https://emeld.
org/workshop/2005/papers/good-paper.pdf

See Also

The World Atlas of Language Structure (WALS) contains typical data that most people would very
much like to recode before using for further analysis. See Cysouw et al. 2005 for a discussion of
various issues surrounding the WALS data.

https://web.archive.org/web/20221007002846/https://emeld.org/workshop/2005/papers/good-paper.pdf
https://web.archive.org/web/20221007002846/https://emeld.org/workshop/2005/papers/good-paper.pdf

Index

∗ datasets
glottolog, 7

∗ package
qlcData-package, 2

.expandValues, 3

asPhylo, 3, 6

collapse.singles, 4

FromDataFrameNetwork, 8

getTree, 4, 5, 8
glottolog, 6, 7
gsub, 15

join.align (join_align), 9
join_align, 9

multi2di, 4

pass_align, 10
phylo, 4

qlcData (qlcData-package), 2
qlcData-package, 2

read.csv, 13
read.profile, 2
read.profile (write.profile), 18
read.recoding, 2, 13
read.recoding (write.recoding), 21
read_align, 2, 9, 11
recode, 2, 12, 21

stri_opts_fixed, 17
stri_opts_regex, 17

tokenize, 2, 10, 14, 19, 20
ToNewick, 4

write.profile, 2, 18, 18
write.recoding, 13, 21

24

	qlcData-package
	.expandValues
	asPhylo
	getTree
	glottolog
	join_align
	pass_align
	read_align
	recode
	tokenize
	write.profile
	write.recoding
	Index

